2007 ToT Spring Seniors A1: Coordinate Bashing

A,B,C and  D are points on the parabola y = x^2 such that AB and CD intersect on the y-axis. Determine the x-coordinate of D  in terms of the x-coordinates of A,B and C, which are a, b and c respectively.
Solution:

Start out by graphing y=x^2, and labeling lines \overline{AB} and \overline{CD}, such that all points A,B,C,D are on the line y=x^2. We label the point A (a,a^2), the point B (b,b^2), the point C (c,c^2), and the point D(d,d^2). The lines intersect at the y-axis, which we label to be point (0,e). 

We start by finding the equation \overline{AB} is on. We put the line into the slope-intercept form y=mx+z, where m is the slope and z is the y-intercept* . Since the line intersects the y-axis at the point (0,e), we know the y-intercept is e. The slope of the line is \frac{b^2-a^2}{b-a}=\frac{(b+a)(b-a)}{(b-a)}=b+a. Therefore we have y=(a+b)\times x+e. Substituting the point (a,a^2) into the equation gives us a^2=(a+b)\times a+e\implies a^2=a^2+ab+e\implies ab+e=0.
We could also substitute (b,b^2) into the equation to give us b^2=(a+b)\times b+e\implies ab+e=0 as well.

We now find the equation \overline{CD} is on. Again, put the line into slope-intercept form y=mx+z, where m is slope, and z is y-intercept*. The lines \overline{AB} and\overline{CD} intersect at the point (0,e)\forall e, therefore the y-intercept of \overline{CD} is e. The slope of \overline{CD} is \frac{d^2-c^2}{d-c}=\frac{\left(d+c\right)\left(d-c\right)}{\left(d-c\right)}= d+c. Therefore our new equation is y= \left(d+c\right)\times x+e. Substituting either points (c,c^2) or (d,d^2) give c^2= \left(d+c\right)\times c+e or d^2= \left(d+c\right)\times d+e, where both can be simplified two after expanding and subtract c^2 in the first equation, and d^2 in the second equation to give cd+e=0. 

We are now left with the two equations cd+e=0 and ab+e=0. Subtracting the two equations results in 
cd-ab=0
\implies cd=ab
\implies d=\boxed{\frac{ab}{c}}

*(note: I changed the slope-intercept form from y=mx+b to y=mx+z to avoid any confusion with point B)

ToTProblem.jpg
Advertisements

Purpose of Blog

Hello everyone, and welcome to my new site.  This site is run with wordpress.

This problem will have three type of entries:

  1. Self proposed problems (where you as the reader are encouraged to post solutions), will be labeled in “Proposed Problems”
  2. Solution Problems (these problems are usually contest, or fun proposed problems on the AoPS Forums),  will be labeled in “Solutions”.
  3. Articles (articles on a topic in mathematics, such as the Quadratic Formula), will be labeled as “Articles”
Happy problem solving!
~Justin